19 research outputs found

    TR-2008012: Product-Free Lambek Calculus is NP-Complete

    Full text link

    Deciding FO-Rewritability of Ontology-Mediated Queries in Linear Temporal Logic

    Get PDF

    Reverse Engineering of Temporal Queries Mediated by LTL Ontologies

    Full text link
    In reverse engineering of database queries, we aim to construct a query from a given set of answers and non-answers; it can then be used to explore the data further or as an explanation of the answers and non-answers. We investigate this query-by-example problem for queries formulated in positive fragments of linear temporal logic LTL over timestamped data, focusing on the design of suitable query languages and the combined and data complexity of deciding whether there exists a query in the given language that separates the given answers from non-answers. We consider both plain LTL queries and those mediated by LTL-ontologies.Comment: To be published in IJCAI 2023 proceeding

    Deciding FO-rewritability of ontology-mediated queries in linear temporal logic

    Get PDF
    Our concern is the problem of determining the data complexity of answering an ontology-mediated query (OMQ) given in linear temporal logic LTL over (Z,<) and deciding whether it is rewritable to an FO(<)-query, possibly with extra predicates. First, we observe that, in line with the circuit complexity and FO-definability of regular languages, OMQ answering in AC0, ACC0 and NC1 coincides with FO(<,\equiv)-rewritability using unary predicates x \equiv 0 mod n), FO(<,MOD)-rewritability, and FO(RPR)-rewritability using relational primitive recursion, respectively. We then show that deciding FO(<)-, \FO(<,\equiv)- and FO(<,MOD)-rewritability of LTL OMQs is ExpSpace-complete, and that these problems become PSpace-complete for OMQs with a linear Horn ontology and an atomic query, and also a positive query in the cases of FO(<)- and FO(<,\equiv)-rewritability. Further, we consider FO(<)-rewritability of OMQs with a binary-clause ontology and identify OMQ classes, for which deciding it is PSpace-, Pi_2^p- and coNP-complete

    Deciding FO-definability of regular languages

    Get PDF
    We prove that, similarly to known PSpace-completeness of recognising FO(<)-definability of the language L(A) of a DFA A, deciding bothFO(<,equiv)- and FO(<,MOD)-definability (corresponding to circuit complexity in AC0 and ACC0) are PSpace-complete. We obtain these results by first showing that known algebraic characterisations of FO-definability of L(A) can be captured by `localisable' properties of the transition monoid of A. Using our criterion, we then generalise the known proof of PSpace-hardness of FO(<)-definability, and establish the upper bounds not only for arbitrary DFAs but also for 2NFAs

    Deciding FO-rewritability of Regular Languages and Ontology-Mediated Queries in Linear Temporal Logic

    Get PDF
    Our concern is the problem of determining the data complexity of answering an ontology-mediated query (OMQ) formulated in linear temporal logic LTL over (Z,<) and deciding whether it is rewritable to an FO(<)-query, possibly with some extra predicates. First, we observe that, in line with the circuit complexity and FO-definability of regular languages, OMQ answering in AC0, ACC0 and NC1 coincides with FO(<,≡)-rewritability using unary predicates x ≡ 0 (mod n), FO(<,MOD)-rewritability, and FO(RPR)-rewritability using relational primitive recursion, respectively. We prove that, similarly to known PSᴘᴀᴄᴇ-completeness of recognising FO(<)-definability of regular languages, deciding FO(<,≡)- and FO(<,MOD)-definability is also PSᴘᴀᴄᴇ-complete (unless ACC0 = NC1). We then use this result to show that deciding FO(<)-, FO(<,≡)- and FO(<,MOD)-rewritability of LTL OMQs is ExᴘSᴘᴀᴄᴇ-complete, and that these problems become PSᴘᴀᴄᴇ-complete for OMQs with a linear Horn ontology and an atomic query, and also a positive query in the cases of FO(<)- and FO(<,≡)-rewritability. Further, we consider FO(<)-rewritability of OMQs with a binary-clause ontology and identify OMQ classes, for which deciding it is PSᴘᴀᴄᴇ-, Π2p- and coNP-complete

    Reverse engineering of temporal queries mediated by LTL ontologies

    Get PDF
    In reverse engineering of database queries, we aim to construct a query from a given set of answers and non-answers; it can then be used to explore the data further or as an explanation of the answers and non-answers. We investigate this query-by-example problem for queries formulated in positive fragments of linear temporal logic LTL over time-stamped data, focusing on the design of suitable query languages and the combined and data complexity of deciding whether there exists a query in the given language that separates the given answers from non-answers. We consider both plain LTL queries and those mediated by LTL-ontologies
    corecore